{"id":101,"date":"2020-02-16T21:25:26","date_gmt":"2020-02-16T20:25:26","guid":{"rendered":"https:\/\/www.stumeta2020.de\/?page_id=101"},"modified":"2021-09-12T21:41:35","modified_gmt":"2021-09-12T19:41:35","slug":"vortraege","status":"publish","type":"page","link":"https:\/\/www.stumeta2021.de\/programm\/vortraege\/","title":{"rendered":"Vortr\u00e4ge"},"content":{"rendered":"\n
Im folgenden sind die Vortr\u00e4ge mit einer kleinen Zusammenfassung aufgelistet. Bis jetzt l\u00e4sst sich sagen, dass es Vortr\u00e4ge von unserem Institut zu der vielseitigen Forschung gibt, aber auch externe Meteorologen und Redner sind bereits angefragt.<\/p>\n\n\n\n
Prof. Dr.\nJan Christian Habel, Department of Biosciences, University of Salzburg<\/p>\n\n\n\n
Der Klimawandel wirkt sich auf Arten, \u00d6kosysteme und ganze\nLandschaften mit ihren Funktionen aus. In dem Kurzvortrag wird auf die\nAuswirkungen des Klimawandels auf Arten eingegangen. Zahlreiche Studien\nbelegen, dass sich seit einigen Jahrzehnten Verbreitungsareale von Arten\nver\u00e4ndern. Zahlreiche Arten verlagerten ihre Verbreitungsareal in die\nn\u00f6rdlichere Breiten und\/oder wandern in h\u00f6here Lagen. Arten aus dem\nMediterranraum treten in Mitteleuropa auf. Diese Arealverschiebungen f\u00fchren\nh\u00e4ufig zur r\u00e4umlichen und zeitlichen Entkopplung von Interaktionen zwischen\nArten (Pflanze – Tier, Organismen und Pr\u00e4datoren bzw. Parasiten). Dadurch\ngeraten Arten zum Teil unter Stress, da sie sich nur begrenzt an diese rasch\nablaufenden Ver\u00e4nderungen anpassen k\u00f6nnen. Es ist davon auszugehen, dass ein\nTeil der Arten Mitteleuropas durch den Klimawandel aussterben wird.<\/p>\n\n\n\n
Prof. Dr. Stephan Borrmann, Institut f\u00fcr Physik der\nAtmosph\u00e4re, JGU Mainz und Max Plank Institut f\u00fcr Chemie Mainz <\/p>\n\n\n\n
During the Asian and West African monsoons large meteorological structures develop which reach into the upper troposphere and lower stratosphere (UTLS) with impact on the aerosols and the precursor gases entering the stratosphere.<\/p>\n\n\n\n
Embedded in the Easterly flow in West Africa these are widespread fields of Mesoscale Convective Systems (MCS) which reach altitudes of 16 to 18 km. Further Northeast the Asian Monsoon Anticyclone (AMA) forms from mid-June until October in an altitude band from roughly 12 to 20 km. Being a fairly closed rotating air mass with a strong convective uplift underneath, the AMA extends from East Asia to the Middle East. Long range transport from as far as India and Eastern China provides materials which are carried aloft by the deep convective clouds in the Himalaya region. Sources (e.g., biomass burning, anthropogenic combustion, agricultural emissions) from the regional boundary layers also contribute here. The anvil outflows of the convective clouds release the uplifted (and partly processed) source gases and aerosols into the UTLS. Here New Particle Formation (NPF) events generate new aerosols from the inorganic and organic precursor gases by homogeneous nucleation. CALIPSO satellite measurements revealed a distinct aerosol layer (i.e., the Asian Tropopause Aerosol Layer; ATAL) between 15 and 16.5 km within the AMA, the physical and chemical characteristics of which still were unclear. Since these phenomena occur at the tropopause in areas with slow upwelling motion, they may contribute to the global stratospheric aerosol influencing atmospheric chemistry (e.g. for ozone) and climate. During the 2017 StratoClim field campaign the Russian high altitude research aircraft M-55 \u201cGeophysica\u201d operated in the AMA and ATAL at altitudes up to 20 km. Extensive in-situ chemical composition measurements were performed on the submicron ambient aerosol adopting an aerosol mass spectrometer, which was newly developed by our group. In addition a condensation particle counters and a optical particle detection instrument provided measurements of number concentration and volatility of aerosol particles as small as 6 nm. Some of the adopted methods (including a 10 minute movie), as well as key results and their significance from the 2017 StratoClim campaign in Nepal are discussed in the presentation.<\/p>\n\n\n\n
(Sprache: Englisch)<\/p>\n\n\n\n
Priv.-Doz. Dr. Michael Riemer, Institut f\u00fcr die Physik der\nAtmosph\u00e4re, JGU Mainz<\/p>\n\n\n\n
Tropical\ncyclones are among the most hazardous weather systems. They cause extreme\nwinds, tremendous precipitation, and storm surge. At the same time, tropical\ncyclones pose an intriguing science problem as they involve complex fluid\ndynamic and thermodynamic interactions, and a closed theory for their formation\nand intensification does not yet exist. In this lecture we will discuss\nfundamental aspects of storm dynamics by considering the idealized situation of\na moist vortex above a frictional boundary layer. Using this simplified\nframework, several important aspects of the dynamics of these hazardous storms\ncan be understood based on the knowledge of elementary fluid dynamical\nconcepts. <\/p>\n\n\n\n
(Englisch)<\/p>\n\n\n\n
PostDoc Dr. Franziska Teubler, Institut f\u00fcr Physik der\nAtmosph\u00e4re Mainz<\/p>\n\n\n\n
Atmospheric blocking events are multi-day episodes of high pressure systems which block the mid-latitude westerly flow and can last from days to weeks. Owing to their persistence they can lead to extreme surface weather in the affected regions. Some of the largest forecast busts in the extratropics are related to the onset of atmospheric blocking due to their complex dynamical nature.
I briefly want to discuss two major extremes which occurred this year and have been related to atmospheric blocking: the Canadian heatwave and the flooding in Belgium and western Germany. The remainder of the presentation will focus on the complex dynamics and introduce some of the concepts and mechanisms related to the onset and maintenance of atmospheric blocking.
Special attention will be given on the dynamics based on a potential vorticity- potential temperature framework.
<\/p>\n\n\n\n
(Sprache: Englisch)<\/p>\n\n\n\n
Prof. Dr. Holger Tost, Institut f\u00fcr Physik der Atmosph\u00e4re,\nJGU Mainz<\/p>\n\n\n\n
Everybody\nhas heard about the IPCC reports. In this presentation, it will be described\nhow a modelling team can contribute to an IPCC report. What can be simulated?\nWhat is relevant for climate change beyond the CO2 warming effect? How is IPCC\nlinked to air pollution and air quality. The talk will elucidate what a\nmodeller has to do to participate in an IPCC effort and what a team has to do\nto be allowed to submit results which will be considered in an IPCC report.<\/p>\n\n\n\n
Prof. Dr. Peter Hoor, Institut f\u00fcr Physik der Atmosph\u00e4re,\nJGU Mainz<\/p>\n\n\n\n
Die Tropopausenregion stellt eine Schl\u00fcsselregion f\u00fcr\ndynamische, mikrophysikalische und (aerosol-)chemische Prozesse dar, die\nZirkulation und Klima beeinflussen. Relevante Vorg\u00e4nge laufen auf Skalen ab,\ndie von der turbulenten bis zur planetaren Skala reichen und die\nZusammensetzung und Mikrophysik dieser Region bestimmen. Die gro\u00dfe Bandbreite\nan Skalen f\u00fchrt zu signifikanten Unsicherheiten im Verst\u00e4ndnis sogar des\nIst-Zustandes der Atmosph\u00e4renzusammensetzung und insbesondere Prognosen des\nzuk\u00fcnftigen Klimas.<\/p>\n\n\n\n
Im Vortrag wird die Tropopausenregion und ihre Bedeutung f\u00fcr das Klima und das Erdystem vorgestellt. Besonderes Augenmerk liegt auf den offenen Fragen in diesem Forschungsfeld und wie diese in Mainz speziell im neuen Forschungsverbund „TPChange<\/a>: The Tropopause in a Changing Atmosphere“ adressiert werden.<\/p>\n\n\n\n (Sprache: Deutsch)<\/p>\n","protected":false},"excerpt":{"rendered":" Im folgenden sind die Vortr\u00e4ge mit einer kleinen Zusammenfassung aufgelistet. Bis jetzt l\u00e4sst sich sagen, dass es Vortr\u00e4ge von unserem Institut zu der vielseitigen Forschung gibt, aber auch externe Meteorologen und Redner sind bereits angefragt. Effekte des Klimawandels auf die Biodiversit\u00e4t Mitteleuropas Samstag 10:40 Uhr Prof. Dr. Jan Christian Habel, Department of Biosciences, University of […]<\/p>\n","protected":false},"author":1,"featured_media":0,"parent":41,"menu_order":0,"comment_status":"closed","ping_status":"closed","template":"","meta":[],"_links":{"self":[{"href":"https:\/\/www.stumeta2021.de\/wp-json\/wp\/v2\/pages\/101"}],"collection":[{"href":"https:\/\/www.stumeta2021.de\/wp-json\/wp\/v2\/pages"}],"about":[{"href":"https:\/\/www.stumeta2021.de\/wp-json\/wp\/v2\/types\/page"}],"author":[{"embeddable":true,"href":"https:\/\/www.stumeta2021.de\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/www.stumeta2021.de\/wp-json\/wp\/v2\/comments?post=101"}],"version-history":[{"count":5,"href":"https:\/\/www.stumeta2021.de\/wp-json\/wp\/v2\/pages\/101\/revisions"}],"predecessor-version":[{"id":726,"href":"https:\/\/www.stumeta2021.de\/wp-json\/wp\/v2\/pages\/101\/revisions\/726"}],"up":[{"embeddable":true,"href":"https:\/\/www.stumeta2021.de\/wp-json\/wp\/v2\/pages\/41"}],"wp:attachment":[{"href":"https:\/\/www.stumeta2021.de\/wp-json\/wp\/v2\/media?parent=101"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}